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Abstract: This paper considers the problem of reliable control for continuous-time systems with interval time-varying
delay. By introducing a random matrix, a new practical actuator fault model is established. Using the Lyapunov-Krasovskii
approach, a sufficient condition for the existence of reliable controller is expressed by a linear matrix inequality(LMI). An
illustrative example is exploited to show the effectiveness of the proposed design procedures.
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1 Introduction

Time-delay phenomenon is often encountered in various
practical systems, such as distributed networks, chemical
engineering systems, inferred grinding models, microwave
oscillator, manual control, neural networks, ship stabiliza-
tion, population dynamic model, and systems with lossless
transmission lines. The existence of the time delay may
cause instability or bad performances in dynamic systems.
Hence, the stability and stabilization problems for the sys-
tems with time-delay have received some attenuation [1–4].

The actuator is an important component of control sys-
tems, so its failure may deteriorate the control system per-
formance and may even cause systems instability in practi-
cal control systems. Reliable control, introduced to tolerate
the failures and to maintain the system stability and perfor-
mance, is therefore more meaningful. However, most exit-
ing results are based on the assumption that the actuators
are in good condition. In fact, actuator signal drift includ-
ing complete failure often occurs in real world. The main
task of this study is to establish a reasonable actuator fault
model and design a reliable controller based on this model,
such that the closed-loop system can maintain its stability
and performance, not only when all control components are
operational, but also in the case of existing some abnormal
actuators.

Over the past few decades, reliable control problems
have been extensively studied [5–11]. Most of these stud-
ies depict the failure model by introducing a scaling fac-
tor βl, βl ∈ Ω � {βl = diag{βl1 , βl2 , . . . , βlq}, βli =
0 or 1, i = 1, 2, . . . , q}, that is, the actuator will lost its all
functions when the actuator failure occurs, in fact, this was
not the case. The scale factor βli = 0 or 1 are only two spe-
cial cases. Another modelling approach is by decomposing
the control matrix B into BΣ and BΣ̄ [12, 13], where BΣ

denotes the control matrix associated with the set Σ and BΣ̄

denotes the control matrix associated with the complemen-
tary subset of the control input, and Bσ with σ ⊆ Σ corre-
spond to a subset of susceptible actuator experience failure.

However, in most situations, the gain of the actuator fluc-
tuates over disturbance with a certain distribution. The ex-
isting actuator fault model will not apply here. In this pa-
per, we replace the fault scale factor with a random variable
which obeys a certain probabilistic distribution in an inter-
val. To the best of our knowledge, it seems that there are
few results on such an actuator fault model, which is not
only theoretically interesting and challenging, but also very
important in practical applications. This greatly motivates
the present work.

In this paper, a more general actuator fault model is pro-
posed, which satisfies a certain probabilistic distribution in
an interval. We are interesting in designing a reliable con-
troller such that the dynamic system is exponentially mean-
square stable despite possible actuator signals drift or miss-
ing. Then, sufficient conditions for the existence of reliable
controller are established in terms of linear matrix inequal-
ities (LMIs). Finally, a numerical example is provided to
demonstrate the effectiveness of the proposed design ap-
proach.

2 Problem formulation

Consider the following continuous-time system with in-
terval time-varying delay:

ẋ(t) = Ax(t) + Adx(t − τ(t)) + Bu(t), (1)
x(t) = φ(t), t ∈ [−τ2,−τ1], (2)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control in-
put, φ(t) is a continuous vector-valued initial function, τ(t)
denotes the state delay and satisfies τ1 � τ(t) � τ2, A,Ad
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and B are known constant matrices.
The state feedback controller is considered as follows:

u(t) = Kx(t), (3)
where K is a feedback matrix to be determined.

In this paper, we will study the problem of reliable con-
trol, i.e., the actuators of the system are encountered proba-
bilistic failure. Then, the control input will be as

uF(t) = Ξu(t) =
m∑

i=1

ξiCiKx(t), (4)

where uF(t) represent the control input is under actuator
failure, Ξ = diag{ξ1, . . . , ξm} is a random matrix, whose
elements ξi(i = 1, . . . , m � M) are m unrelated random
variables.

For convenience of analysis, we define mathematical ex-
pectation and variance of ξi to be μi and σ2

i (i ∈ M), re-
spectively. And some other definitions are given as follows:

Δ = diag{σ1, . . . , σm}, Ξ̄ = {u1, . . . , um}, Ci =
diag{0, . . . , 0︸ ︷︷ ︸

i−1

1 0, . . . , 0︸ ︷︷ ︸
m−i

} .

Remark 1 In equation (4), the scale factor Ξ is a ran-
dom matrix, it represents that the actuator gain of each chan-
nels are variable, and it obeys a certain statistical rule. Ac-
cording to different definition for scale factor in some open
studies, the actuator failure model can be divided into 3
classes:

1) ξi(i ∈ M) obeys Bernoulli distribution [14–18], i.e.,
ξi ∈ [0 1](i ∈ M), wherein ξi = 1(i ∈ M) or 0 means that
the actuator is in good condition or completely fails;

2) ξi(i ∈ M) takes value in interval [0, 1] [19, 20], and
it represents that the actuator has partial failure;

3) ξi(i ∈ M) is a known constant scalar, e.g., ξi(i ∈
M) = 0, 1 or other fixed value, which satisfies ξi(i ∈ M) ∈
[0, 1]. From the above definition of ξi, we can find that our
model can cover the other cases. Moreover, our model is
more compatible with the real situation. Finally, we extend
the upbound of ξ, i.e., ξ can be bigger than 1.

Remark 2 In equation (4), ui, the mathematical expec-
tation of ξ, represents the average deviation of actuator gain,
and σi denotes the gain of actuators fluctuation levels be-
cause of influence of all the factors acting on actuators.

Combining (1) and (4), we obtain the close-looped sys-
tem as follows:

ẋ(t)=Āx(t)+B(Ξ−Ξ̄)Kx(t)+Adx(t−τ(t)), (5)
where Ā = A + BΞ̄K.

The main purpose of this paper is to develop a reliable
controller for system (1) with consideration of stochastic ac-
tuator fault described by (4).

3 Main result

we now proceed to develop an innovative approach to
guarantee system (5) exponentially stable in the mean-
square sense (EMSS) under giving feedback K. Then, based
on this, we will propose a controller synthesis method for
system (5).

Theorem 1 For given scalars τ1, τ2, σi, μi(i ∈ M)
and feedback matrix K, system (1) with the actuator fault
model (4) is EMSS if there exist positive definite matrices

P, Qi(i = 1, 2), Rj(j = 1, 2, 3), such that LMI (6) holds.

Ω=

⎡
⎢⎢⎢⎣

Γ11 + Γ̂11 R1

∗ −R1 − R3 − Q1

∗ ∗
∗ ∗

PAd+ĀTRAd+R2 0
R3 0

− 2R2−2R3+AT
d RAd R2+R3

∗ −R2−R3−Q2

⎤
⎥⎥⎥⎦<0, (6)

where

Γ11 = PĀ + ĀTP + Q1 + Q2 − R1 − R2,

Γ̂11 = ĀTRĀ +
m∑

i=1

σ2
i KTCT

i BTRBCiK,

R = τ2
1 R1 + τ2

2 R2 + (τ2 − τ1)2R3.

Proof Choose the Lyapunov-Krasovskii functional can-
didate as

V (xt) =
3∑

i=1

Vi(xt),

V1(xt) = xT(t)Px(t),

V2(xt) =
� t

t−τ1
xT(s)Q1x(s)ds +

� t

t−τ2
xT(s)Q2x(s)ds,

V3(xt) = τ1

� 0

−τ1

� t

t+s
ẋT(v)R1ẋ(v)dvds

+ τ2

� 0

−τ2

� t

t+s
ẋT(v)R2ẋ(v)dvds

+ (τ2 − τ1)
� −τ1

−τ2

� t

t+s
ẋT(v)R3ẋ(v)dvds.

From the definition of Ξ in (4), we can easily know

E [B(Ξ − Ξ̄)K] = 0, (7)

and

E {[B(Ξ − Ξ̄)K]TR[B(Ξ − Ξ̄)K]}
=

m∑
i=1

σ2
i KTCT

i BTRBCiK. (8)

Using Lemma 1 of [1] and the infinitesimal operator [21]
for system (5), we have

LV1(xt) = E {2xT(t)P [Āx(t) + Adx(t − τ(t))]},
LV2(xt) = E {xT(t)(Q1 + Q2)x(t)

−xT(t − τ1)Q1x(t − τ1)
−xT(t − τ2)Q2x(t − τ2)},

LV3(xt) = E {ẋT(t)Rẋ(t) − τ1

� t

t−τ1
ẋT(s)R1ẋ(s)ds

−τ2

� t

t−τ2
ẋT(s)R2ẋ(s)ds

−(τ2 − τ1)
� t−τ1

t−τ2
ẋT(s)R3ẋ(s)ds}

� E {xT(t)ĀTRĀx(t)

+xT(t)
m∑

i=1

σ2
i KTCT

i BTRBCiKx(t)

+xT(t − τ(t))AT
d RAdx(t − τ(t))

+2xT(t)ĀTRAdx(t − τ(t))
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+

[
x(t)

x(t − τ1)

]T [
−R1 R1

R1 −R1

][
x(t)

x(t − τ1)

]

+

⎡
⎢⎣ x(t)

x(t − τ(t))
x(t − τ2)

⎤
⎥⎦

T ⎡
⎢⎣−R2 R2 0

∗ −2R2 R2

∗ ∗ −R2

⎤
⎥⎦

⎡
⎢⎣ x(t)

x(t − τ(t))
x(t − τ2)

⎤
⎥⎦

+

⎡
⎢⎣ x(t − τ1)

x(t − τ(t))
x(t − τ2)

⎤
⎥⎦

T ⎡
⎢⎣−R3 R3 0

∗ −2R3 R3

∗ ∗ −R3

⎤
⎥⎦

⎡
⎢⎣ x(t − τ1)

x(t − τ(t))
x(t − τ2)

⎤
⎥⎦ .

Hence,
LV (xt) � E {ζT(t)Ωζ(t)}, (9)

where ζ(t) = [xT(t) xT(t− τ1) xT(t− τ(t)) xT(t− τ2)]T,
R and Ω are defined in Theorem 1.

From (6) and (9), we can conclude:

LV (x(t)) < −λmin(Ω)E {ζT(t)ζ(t)}, (10)

where λmin is the minmum eigenvalue of Ω.
Then, we can conclude system (5) is EMSS by using the

similar method of Theorem 1 in [22]. The proof is com-
pleted.

In the following, we are seeking to design the reliable
controller gain K based on Theorem 1.

Theorem 2 For given scalars τ1, τ2, σi, μi(i ∈ M),
there exists a static state feedback reliable controller in the
form (4) such that closed-loop system (5) is EMSS, if there
exist matrices X > 0, Q̃i > 0(i = 1, 2), R̃j > 0(j =
1, 2, 3) and matrix Y satisfy LMI (11). Furthermore, the re-
liable controller gain is K = Y X−1.

Θ = (Θij)6×6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̃11 R̃1 AdX + R̃2 0 XAT + Y TΞ̄TBT Ã
∗ −R̃1 − R̃3 − Q̃1 R̃3 0 0 0
∗ ∗ −2R̃2 − 2R̃3 R̃2 + R̃3 XAT

d 0
∗ ∗ ∗ −R̃2 − R̃3 − Q̃2 0 0
∗ ∗ ∗ ∗ −2X + R̃ 0
∗ ∗ ∗ ∗ ∗ −2X̄ + ˜̄R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
<0, (11)

where
Γ̃11 = AX + XAT + BΞ̄Y + Y TΞ̄TBT

+ Q̃1 + Q̃2 − R̃1 − R̃2,

Ã = [σ1Y
TCT

1 BT σ2Y
TCT

2 BT · · ·σmY TCT
mBT],

˜̄R = diag{R̃, . . . , R̃︸ ︷︷ ︸
m

},

R̃ = τ2
1 R̃1 + τ2

2 R̃2 + (τ2 − τ1)2R̃3,

X̄ = diag{X, . . . , X︸ ︷︷ ︸
m

}.

Proof By using Schur complement, equation (6) holds

if and only if (12) shown.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 R1 PAd + R2 0 ĀTP AP̄
∗ −R1 − R3 − Q1 R3 0 0 0
∗ ∗ −2R2 − 2R3 R2 + R3 AT

d P 0
∗ ∗ ∗ −R2 − R3 − Q2 0 0
∗ ∗ ∗ ∗ −PR−1P 0
∗ ∗ ∗ ∗ ∗ −P̄R̄−1P̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (12)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 R1 PAd + R2 0 ĀTP AP̄
∗ −R1 − R3 − Q1 R3 0 0 0
∗ ∗ −2R2 − 2R3 R2 + R3 AT

d P 0
∗ ∗ ∗ −R2 − R3 − Q2 0 0
∗ ∗ ∗ ∗ −2P + R 0
∗ ∗ ∗ ∗ ∗ −2P̄ + R̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (13)

where
A= [σ1K

TCT
1 BT σ2K

TCT
2 BT · · ·σmKTCT

mBT],
R̄= diag{R, . . . ,R︸ ︷︷ ︸

m

},

P̄ = diag{P, . . . , P︸ ︷︷ ︸
m

}.

Due to
(R− P )R−1(R− P ) � 0,

which gives
−PR−1P � −2P + R, (14)

and we have that (12) holds if (13).

Defining X = P−1, X̄ = diag{X, . . . , X︸ ︷︷ ︸
m

} and applying

the congruence transformation diag{X, X, X, X, X, X̄}
to (13) and setting Q̃i = XQiX(i = 1, 2), R̃j =
XRjX(j = 1, 2, 3) and Y = KX , we can conclude the
result from equation (13). This completes the proof.

Remark 3 There exists conservatism in step equation
(13) ⇒ equation (12) by using equation (14). The results
will be a little improved if adopting the cone complemen-
tary algorithm [23], which is a popular method in dealing
with controller designs. To avoid using algorithms, we can
introduce a scaling parameter ε > 0 to improve the LMI



592 Z. GU et al. / J Control Theory Appl 2011 9 (4) 589–593

condition in Theorem 2. That is
(R− ε−1P )R−1(R− ε−1P ) � 0
⇒ −PR−1P � −2εP + ε2R. (15)

As a result, the items Θ55 and Θ66 in the conditions (11),
Theorem 2 are replaced by −2εX +ε2R̃ and −2εX̄ +ε2 ˜̄R,
respectively. Obviously, the resulting conditions with this
replacement cover those in Theorem 2.

Remark 4 Obviously, the solvability of LMI (11) de-
pends on not only the bound of time-delay, but also the ac-
tuator fault distribution. Therefore, it will lead to less con-
servatism in deriving the results.

4 An illustrative example

To verify the effectiveness of the proposed method, we
consider the following time-delay system (1) with parame-

ters:

A =

[
1 2
1 −3

]
, Ad =

[
−1 0.5
−0.5 1

]
, B =

[
1 0
0 1

]
,

0.01 < τ(t) < 1.2,

and the initial conditions

φ(t) = [−1 1]T,

t ∈ [−1.2 − 0.01].

Two cases are considered to illustrate the effectiveness of
our proposed method. The first one is the case that the sys-
tems is in good condition, i.e., there are no any failures in
the system. The other one is under the stochastic actuator
failure. As shown in Table 1, the standard controller K1 and
reliable controller K2 are obtained, respectively, according
to Theorem 2.

Table 1 Controller.

Case Fault distribution Controller

Case 1 Ξ̄1 =

[
1.0 0
0 1.0

]
, Δ1 =

[
0.0 0
0 0.0

]
K1 =

[
−1.4080 −2.3273
−0.8026 1.4754

]

Case 2 Ξ̄2 =

[
1.5 0
0 1.5

]
, Δ2 =

[
0.5 0
0 0.5

]
K2 =

[
−0.9773 −1.5832
−0.5386 0.8215

]

As shown in Figs. 1–4, when the system is in good condi-
tion, listed in Case 1, regardless of using K1 or K2, the sys-
tem can work well. However, when the system is in failure
condition listed in Case 2, the closed-loop system with the
standard controller is not even asymptotically stable; while
using the reliable controller K2 can still operate well and
maintain an acceptable level of performance.

Fig. 1 Standard controller for system (1) without failure.

Fig. 2 Reliable controller for system (1) without failure.

Fig. 3 Standard controller for system (1) with failure.

Fig. 4 Reliable controller for system (1) with failure.

5 Conclusions

This paper provides a new practical actuator fault model.
Based on this, the reliable controller design methodology
for continuous-time system with interval time-varying de-
lay is proposed. The system under actuator failure can oper-
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ate well by using the proposed reliable controller. Though a
numerical example, we illustrate the design procedures.
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